Online Public Access Catalogue
Amazon cover image
Image from Amazon.com

Embedded Robotics [electronic resource] : Mobile Robot Design and Applications with Embedded Systems / by Thomas Bräunl.

By: Contributor(s): Material type: TextTextPublisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2006Edition: Second EditionDescription: XIII, 458 p. 233 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540343196
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 006.3 23
LOC classification:
  • Q334-342
  • TJ210.2-211.495
Online resources:
Contents:
Embedded Systems -- Robots and Controllers -- Sensors -- Actuators -- Control -- Multitasking -- Wireless Communication -- Mobile Robot Design -- Driving Robots -- Omni-Directional Robots -- Balancing Robots -- Walking Robots -- Autonomous Planes -- Autonomous Vessels and Underwater Vehicles -- Simulation Systems -- Mobile Robot Applications -- Localization and Navigation -- Maze Exploration -- Map Generation -- Real-Time Image Processing -- Robot Soccer -- Neural Networks -- Genetic Algorithms -- Genetic Programming -- Behavior-Based Systems -- Evolution of Walking Gaits -- Outlook.
In: Springer eBooksSummary: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t all started with a new robot lab course I had developed to accompany my robotics lectures. We already had three large, heavy, and expensive mobile robots for research projects, but nothing simple and safe, which we I could give to students to practice on for an introductory course. We selected a mobile robot kit based on an 8-bit controller, and used it for the first couple of years of this course. This gave students not only the enj- ment of working with real robots but, more importantly, hands-on experience with control systems, real-time systems, concurrency, fault tolerance, sensor and motor technology, etc. It was a very successful lab and was greatly enjoyed by the students. Typical tasks were, for example, driving straight, finding a light source, or following a leading vehicle. Since the robots were rather inexpensive, it was possible to furnish a whole lab with them and to c- duct multi-robot experiments as well. Simplicity, however, had its drawbacks. The robot mechanics were unre- able, the sensors were quite poor, and extendability and processing power were very limited. What we wanted to use was a similar robot at an advanced level.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
No physical items for this record

Embedded Systems -- Robots and Controllers -- Sensors -- Actuators -- Control -- Multitasking -- Wireless Communication -- Mobile Robot Design -- Driving Robots -- Omni-Directional Robots -- Balancing Robots -- Walking Robots -- Autonomous Planes -- Autonomous Vessels and Underwater Vehicles -- Simulation Systems -- Mobile Robot Applications -- Localization and Navigation -- Maze Exploration -- Map Generation -- Real-Time Image Processing -- Robot Soccer -- Neural Networks -- Genetic Algorithms -- Genetic Programming -- Behavior-Based Systems -- Evolution of Walking Gaits -- Outlook.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . t all started with a new robot lab course I had developed to accompany my robotics lectures. We already had three large, heavy, and expensive mobile robots for research projects, but nothing simple and safe, which we I could give to students to practice on for an introductory course. We selected a mobile robot kit based on an 8-bit controller, and used it for the first couple of years of this course. This gave students not only the enj- ment of working with real robots but, more importantly, hands-on experience with control systems, real-time systems, concurrency, fault tolerance, sensor and motor technology, etc. It was a very successful lab and was greatly enjoyed by the students. Typical tasks were, for example, driving straight, finding a light source, or following a leading vehicle. Since the robots were rather inexpensive, it was possible to furnish a whole lab with them and to c- duct multi-robot experiments as well. Simplicity, however, had its drawbacks. The robot mechanics were unre- able, the sensors were quite poor, and extendability and processing power were very limited. What we wanted to use was a similar robot at an advanced level.

There are no comments on this title.

to post a comment.